Minimax redundancy for the class of memoryless sources

نویسندگان

  • Qun Xie
  • Andrew R. Barron
چکیده

Let Xn = (X1; ; Xn) be a memoryless source with unknown distribution on a finite alphabet of size k. We identify the asymptotic minimax coding redundancy for this class of sources, and provide a sequence of asymptotically minimax codes. Equivalently, we determine the limiting behavior of the minimax relative entropy minQ maxP D(PX kQX ), where the maximum is over all independent and identically distributed (i.i.d.) source distributions and the minimum is over all joint distributions. We show in this paper that the minimax redundancy minus ((k 1)=2) log (n=(2 e)) converges to log det I( ) d = log ( (1=2)= (k=2)), where I( ) is the Fisher information and the integral is over the whole probability simplex. The Bayes strategy using Jeffreys’ prior is shown to be asymptotically maximin but not asymptotically minimax in our setting. The boundary risk using Jeffreys’ prior is higher than that of interior points. We provide a sequence of modifications of Jeffreys’ prior that put some prior mass near the boundaries of the probability simplex to pull down that risk to the asymptotic minimax level in the limit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Shannon Code Minimizes the Maximal Redundancy

Source coding, also known as data compression, is an area of information theory that deals with the design and performance evaluation of optimal codes for data compression. In 1952 Hu man constructed his optimal code that minimizes the average code length among all pre x codes for known sources. Actually, Hu man codes minimizes the average redundancy de ned as the di erence between the code len...

متن کامل

Efficient universal noiseless source codes

Although the existence of universal noiseless variable-rate codes for the class of discrete stationary ergodic sources has previously been established, very few practical universal encoding methods are available. Efficient implementable universal source coding techniques are discussed in this paper. Results are presented on source codes for which a small value of the maximum redundancy is achie...

متن کامل

Universal codes for finite sequences of integers drawn from a monotone distribution

We offer two noiseless codes for blocks of integers Xn = (X1, . . . , Xn). We provide explicit bounds on the relative redundancy that are valid for any distribution F in the class of memoryless sources with a possibly infinite alphabet whose marginal distribution is monotone. Specifically we show that the expected code length L(Xn) of our first universal code is dominated by a linear function o...

متن کامل

Robustly Minimax Codes for Universal Data Compression

We introduce a notion of ‘relative redundancy’ for universal data compression and propose a universal code which asymptotically achieves the minimax value of the relative redundancy. The relative redundancy is a hybrid of redundancy and coding regret (pointwise redundancy), where a class of information sources and a class of codes are assumed. The minimax code for relative redundancy is an exte...

متن کامل

Markov Types and Minimax Redundancy for Markov Sources ∗ December 6 , 2003

Redundancy of universal codes for a class of sources determines by how much the actual code length exceeds the optimal code length. In the minimax scenario one designs the best code for the worst source within the class. Such minimax redundancy comes in two flavors: either on average or for individual sequences. The latter is also known as the maximal or the worst case minimax redundancy. We st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 43  شماره 

صفحات  -

تاریخ انتشار 1997